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In this study we develop an exploratory method for non-holonomic driftless systems with unknown
state equation and sensor mapping to enable controllability. For that purpose, we acquire an approxi-
mated mapping from the sensor space to a virtual linear state space by the study of the Jacobian of the
sensors, therefore circumventing the lack of knowledge of the underlying state equation of the system
and mapping of the sensors.
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1 Introduction

In the study of non-holonomic dynamic systems such as the
unicycle, the sensor model is commonly a given and hardcoded
into the algorithms[1][2]. Here we explore the reconstruction
of unknown sensor mappings to enable control in the context
of driftless, non-holonomic systems.

The goal of this work is to recover the sensor mappings
of a robotic system by applying specific motor inputs and
observing the changes in the sensor outputs with the intention
of building a dataset to reconstruct the function that relates
the robot state variables with the sensor signal.

We define three vector spaces that correspond to the true
state space X of the non-holonomic robot, the sensor space
S that maps non-linearly to X and a virtual state space V.
The sensor configuration defines an unknown isomorphic map-
ping φ : X −→ S, whose reconstruction is the object of this
research. For that purpose, we define the inverse mapping

φ̂−1 : S −→ V between the sensor space and the virtual space

and design φ̂−1 assuming that the original state space X is in
chained form [3][4].

2 Methods

In order to obtain, φ̂−1, we designed a method to explore the
sensor space in an efficient manner and thus map the sensor
readings to the expected state equation in chained form. The
first step is to find the optimal directions to explore the space,
followed by data acquisition and then function approximation.

2.1 Initial Orthogonal Direction (IOD)

The subspace that is not immediately controllable with the
system inputs from the state at t = 0 is what we call the
Initial Orthogonal Direction and it forms the subspace JIOD,
which is orthogonal to the subspace generated by the non-
IOD directions J0. The Jacobian indicates which directions of
the sensor space are immediately controllable with the system
inputs and their linear combination form the subspace J0.
Since the system is non-holonomic, the rank of the Jacobian
is smaller than the rank of the state space.

We start by identifying the IOD because we have no prior
information about φ. The Jacobian of the sensor readings at
state si, where i indicates the sample index, with respect to
the control input u is Ji = ∂s

∂u

∣∣
s=si

. The state equation in

sensor space is given by

ṡi = g(si)u = g1(si)u1 + g2(si)u2. (1)

If we apply control input u =
[
u1 0

]ᵀ
, then ṡi,1 =

g1(si,1)u1 so

∂ṡi,1

∂u1
=
∂g1(si,1)u1

∂u1
+
∂g2(si,1)u2

∂u1
= g1(si,1) ≈ ∆si,1

u1 ∆t
(2)

Similarly for u =
[
0 u2

]ᵀ
and substituting, we arrive at

Ji =
[
∂ṡi,1
∂u1

∂ṡi,2
∂u2

]
≈
[

∆si,1
u1 ∆t

∆si,2
u2 ∆t

]
(3)

Therefore, by applying a constant input for a fixed amount
of time and measuring the variations in the sensor readings,
we can obtain the Jacobian of the sensor readings. The inputs
are activated in sequential patterns to find the state where the
Jacobian components are biggest in the IOD (Fig. 1).

Fig.1: The Jacobian of the system at any state is obtained
by applying small inputs, sampling the sensor readings and
returning to the initial position, sequentially for each input at
several states as indicated. The Jacobian is used to obtain the
Initial Orthogonal Direction (IOD).

We now obtain analytically the orthogonal components of
every p := ∆s

u∆t
of J0 (we omit index i in s) to find the closest

configuration to the ideal IOD and the required input to tra-
verse the IOD. Let B0 = (b1, . . . , bm) be an orthogonal basis
for J0 = (p1, . . . ,pm), with m the number of control inputs,
obtained by linear combination of the vector components of
J0. We start by decomposing p into two vectors q ∈ J0 and
r ∈ J⊥0 , denoted the projection and the orthogonal respec-
tively, such that p = q + r. But any vector q ∈ J0 is a linear
combination of (b1, . . . , bm):

q =

m∑
k=1

λk bk, (4)

where

λk =
〈bk, q〉
〈bk, bk〉

(5)

and 〈bk, q〉 is the inner product between bk and q. Then,

q =
m∑

k=1

〈bk, q〉
〈bk, bk〉

bk = p− r. (6)

By the definition of orthogonal subspace we know that
〈bk, r〉 = 0 for all k = 1, . . . ,m, hence

〈bk, q〉 = 〈bk, q + r〉 = 〈bk,p〉 , (7)

so

r = p−
m∑

k=1

〈bk,p〉
〈bk, bk〉

bk. (8)
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Fig.2: The trajectory in the true state space X of (a) sam-
pling the sensor space to construct the dataset by supervised

learning of the inverse mapping function φ̂−1 : S −→ V and
(b) linear control results in time-state space from (x, y, θ) =
(−2, 0.5, π/4) to the origin.

Thus, r is the orthogonal component of p with respect to
the subspace J0. (8) may be expressed in matrix form and
extended to several vectors. We write the base B0 of J0 as

B0 =
[
b1 · · · bm

]
, (9)

and r can be represented by

r = p−B0 (Bᵀ
0 B0)−1 Bᵀ

0 p. (10)

Extending this result to the Jacobian Ji =
[
pi,1 · · · pi,m

]
and Ri =

[
ri,1 · · · ri,m

]
, we obtain

Ri = (I −B0 B
ᵀ
0 ) Ji, (11)

given that B0 is orthonormal. (11) is similar to the solution of
the linear least square methods since it also involves projecting
points to a target subspace.

The IOD corresponds to the greatest ri,j of all Ri.

2.2 Data acquisition
The data acquisition stage involves sampling the sensor

space at predefined points while simultaneously recording the
trajectory history of the system assuming that the state equa-
tion is in chained form. We start by defining the origin of the
system in V as the position of the system at the initial state.
By traversing the state space as conveyed in Fig. 2, we can de-
termine the expected state of the system inchained form and
pair it with the sampled sensor readings. The IOD closest to
the origin will be the only route used to traverse along the
IOD in order to minimize the effect of non-planar topologies
of the state equation of the system.

2.3 Function approximation
We applied a supervised learning method for approximating

φ̂−1 based on linear combination of Gaussian Radial Basis
Functions[5]. The basis were chosen to form a 5 × 5 × 5 grid
fitted to the extreme values of the sensor readings. Variance
was σ2 = 1.52 multiplied by the distance between bases, and
regularization coefficient was λ = 0.5

3 Simulation

We tested the approach on a simulated unicycle to assess
the effectiveness of the method on a virtual non-holonomic sys-

tem. We checked that the inverse mapping φ̂−1 obtained as

explained above by setting the starting position of the unicycle
at any arbitrary position in the region covered by the explo-
ration stage. We controlled the system by time-state control
form[6] to the origin and logged the results. We tested several
formulations for φ, from which here are three examples:

φ1(x) =

xy
θ

 ; φ2(x) =

x+ y
x− y
xθ

 ; φ3(x) =

 ex

sinh(y)
atan(θ)


(12)

Fig. 2 shows the resultant trajectory of the unicycle for φ3.
The unicycle found the optimum IOD to be slightly not per-
pendicular to the IOD in true state space because of the trans-
formation φ(x) induced by the sensors. The controlled trajec-
tory from (−2, 0.5, π/4) to (0, 0, 0) presents some distortion
with respect to the stereotypical trajectory of a state-space

controller because the values of φ̂−1 between the basis points
of the approximation are interpolations, thus the distortion
of the trajectory reflects deviations of the interpolation with
respect to the true inverse function φ−1. Nevertheless, our
approach was able to successfully control the unicycle system
for the three examples of φ given in (12).

4 Conclusion

We proposed a method to reconstruct the observation map-
ping of a non-holonomic system by sampling the sensor space
at regular intervals in a predefined pattern that maps the sen-
sor inputs to an ideal representation of the state space. The
proposed approach can handle a wide variety of sensor map-
pings. There are many applications that these results can ben-
efit from. For example, autonomous vacuum cleaners may au-
tomatically infer their location from a randomly placed cam-
era, and the information given by misplaced sensors in mobile
robots can be automatically remodeled.

There are several limitations to this approach. The con-
trollable region is limited to the region that has been explored
during the data acquisition stage. Moreover, the described
approach suffers from the curse of dimensionality in that a
grid-like pattern of points in the sensor space must be sam-
pled such that the number of points increment exponentially
with the number of problem space dimensions. More sample
points are needed in those regions where the sensor values vary
quicker.

Another limitation is that when φ is not isomorphic as as-
sumed, a unique mapping between vector spaces S and V
may not be determined, leading to apparently random con-
trol laws in surjective sensor mappings. This limitation can
be overcome by combining the information of redundant sen-
sors, which will be our future work.
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